2400 / 2420 / 2450
Performance Drives

ADDITIONAL MODULES

270 MHz Control Modules
Table of Contents

Safety Information
Overview i
Conventions Used i
General Precautions i
Installation Precautions ii
Service Precautions ii

1 About this Addendum
1.1 Contents 1-1
1.1.1 Intended Audience 1-1

2 Product Overview
2.1 Specifications 2-1

3 Electrical Installation
3.1 Overview 3-1
3.2 Wiring Standards and Codes 3-1
3.3 Control Module Connections 3-1
3.3.1 Wiring Precautions 3-1
3.3.2 Asynchronous Serial Connections 3-5
3.3.3 Synchronous Serial Interface (SSI) Connections 3-6
3.3.4 Fiber-Optic Synchronous/Asynchronous Serial Connections 3-6
3.3.5 Analog I/O Connections 3-8
3.3.6 Digital I/O Connections 3-9
3.3.7 Incremental Encoder Interface Connections (Expandable Control Modules) 3-12
3.4 Feedback Modules 3-12
3.5 Communication Modules 3-13
Safety Information

Overview
This section states important safety information that must be followed when installing, operating, and servicing the unit. Study this information carefully before working on or with the units. Failure to follow these instructions may lead to personal injury, death, or damage to the units, motors, or driven equipment.

Additional safety instructions can be found in the 2000 Family / Guide to Installation, Troubleshooting, and Maintenance as well as the application documentation. Please study and follow those instructions as well.

Conventions Used
The following notation convention is used throughout this document to indicate information important to personal safety or machine hazards.

Attention
Identifies information about practices or circumstances that can lead to personal injury or death, property damage, or economic loss.

General Precautions

Attention
Only qualified personnel with the proper skills, instruction, and familiarity with the drive units and their applications should install, start up, operate, troubleshoot, and maintain a drive system. You must be familiar with the electrical and mechanical components of the system to perform the procedures outlined in this document. Failure to comply may result in personal injury, death, and/or equipment damage.

Attention
Failure to take proper precautions for electrical hazard could cause injury or death.

Attention
Failure to follow industry safety standards and instructions in this document could damage drive units and void the manufacturer’s warranty.
Addendum / 80 MHz Expandable Control Modules

Attention
Modules may be sensitive to electrostatic discharge. Static precautions are required when servicing or repairing a module.

Installation Precautions

Attention
An incorrectly installed or operated drive unit can result in damage to the equipment it controls. Make certain installation and operating specifications are followed.

Attention
The drive units and associated equipment must be properly earth grounded.

Service Precautions

Attention
Always disconnect and lock out all electrical supplies before working on a drive unit or associated equipment. Do this before touching any electrical or mechanical components.

Attention
High voltage may be present even when all electrical power supplies are disconnected. After switching off electrical power, wait at least 15 minutes for bus circuit capacitors to discharge before working on the unit or associated equipment. Use an appropriate voltmeter to further verify that capacitors are discharged before beginning work. Do not rely exclusively on bus voltage indicators. Dangerous voltage levels may remain even when the indicators are off.

Safe Service Practices
Follow industry-recognized safety procedures:
• Use only one hand to hold test equipment probes
• Wear approved eye protection
• Stand on insulated material
• Use an isolated oscilloscope
• Keep unnecessary personnel out of the work area
• Never leave a drive cabinet open or unattended
1 About this Addendum

1.1 Contents
This document is an addendum to the 2000 Family / Guide to Installation, Troubleshooting, and Maintenance. It provides information necessary to install the 270 MHz Standard and Expandable control modules for Unico's 2000 family of drives.

The document must be used in conjunction with the 2000 Family / Guide to Installation, Troubleshooting, and Maintenance. Please refer to that manual for complete information on installing the drive. Information in this addendum supercedes that in the manual when using a 270 MHz Standard or Expandable control module.

What’s covered
• Safety Instructions, discusses safety hazards and procedures
• Chapter 2, Product Overview, provides module specifications
• Chapter 3, Electrical Installation, describes the electrical connections

1.1.1 Intended Audience
The addendum is intended for anyone who will be installing, operating, or maintaining drive units using the 270 MHz Standard or Expandable control modules. Installation should be performed by qualified electrical personnel to ensure that correct electrical practices and applicable electrical codes are applied.

The audience is expected to have a basic knowledge of physical and electrical fundamentals, electrical wiring practices and components, and electrical schematics.

Follow instructions
You can prevent injury and damage to the drive units or equipment by carefully following the procedures outlined in this document.

Follow regulations
All electrical work should conform to the National Electrical Code as well as all state and local government regulations. Please familiarize yourself with these regulations.

Read all manuals first
Read this addendum, together with both the 2000 Family / Guide to Installation, Troubleshooting, and Maintenance and the application manual, in their entirety before installing drive units.
2 Product Overview

2.1 Specifications
Detailed control module specifications are provided in Table 2-1 through Table 2-6.

Table 2-1—Part Numbers

<table>
<thead>
<tr>
<th>Control Module</th>
<th>Order Code</th>
<th>Part Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>270 MHz Standard Control Module</td>
<td>N00</td>
<td>324792 (AC) 324793 (high flux)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>325196 (DC)</td>
</tr>
<tr>
<td>270 MHz Expandable Control Module</td>
<td>P00</td>
<td>324739 (straight) 324740 (right-angle)</td>
</tr>
</tbody>
</table>

Table 2-2—Processor/Memory Specifications

<table>
<thead>
<tr>
<th>Central processing unit:</th>
<th>56309 digital signal processor (DSP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clock frequency:</td>
<td>270 MHz</td>
</tr>
<tr>
<td>Data memory:</td>
<td>512 kilobyte battery-backed static RAM</td>
</tr>
<tr>
<td>Scratch pad memory:</td>
<td>1.5 megabyte high-speed RAM</td>
</tr>
<tr>
<td>Program memory:</td>
<td>6.0 megabyte flash EPROM</td>
</tr>
</tbody>
</table>

Table 2-3—Input/Output Specifications

Analog

Inputs: Three (3) 14-bit analog inputs (±10 V DC or 0 to 20 mA)
Optional Analog Interface Module:
Two (2) 16-bit analog inputs (±10 V DC)
Outputs: Two (2) 12-bit analog outputs (±10 V DC)
Optional Analog Interface Module:
Two (2) 16-bit analog outputs (±10 V DC)

Digital

Inputs: Expandable: Two (2) programmable isolated inputs
Outputs: Two (2) programmable contact outputs
(Form A contacts rated 250 V AC @ 5 A)
Configurable I/O: Standard: Eight optional isolated I/O points
Expandable: 16 or 32 optional isolated I/O points
Table 2-4—Serial Communication Specifications

Asynchronous (Console Port)
- **Port:** RS-422/485, isolated, wire terminals
- **Baud rate:** Application dependent (up to 115.2 kbaud)
- **Protocol:** Application dependent

Asynchronous (SCI Port)
- **Port:** RS-422/485, isolated, RJ-45 telephone jack
- **Baud rate:** Application dependent (up to 115.2 kbaud)
- **Protocol:** Application dependent

Synchronous (SSI)
- **Port:** Fiber-optic for high-speed drive command
- **Channels:** Clock synchronization and data channels
- **Baud rate:** 2 Mbaud

Synchronous/Asynchronous
- **Port:** Fiber-optic for high-speed communication
- **Channels:** Clock synchronization and data channels
- **Baud rate:** Application dependent (up to 1 Mbaud)
- **Protocol:** Application dependent

Communication Modules
- **Provision(s):** One (1) optional communication module provision
- **Expandable:** Two (2) optional Anybus® provisions

Communication modules:
- **Serial Communication Module:** Two (2) RS-232/422/485 synchronous/asynchronous ports
- **Fiber-Optic Communication Module:** One (1) fiber-optic synchronous/asynchronous port
- **One (1) RS-232/422/485 synchronous/asynchronous port**
- **Remote I/O Communication Module:** Two (2) Remote I/O interfaces
- **Modbus® Plus Communication Module:** One (1) Modbus® Plus interface
- **ControlNet™ Communication Module:** One (1) ControlNet™ interface
- **Profibus Communication Module:** One (1) Profibus DP interface
- **Ethernet Communication Module:** One (1) Ethernet interface

Anybus® modules:
- Anybus® CANopen communication module
- Anybus® CC-Link® communication module
- Anybus® ControlNet™ communication module
- Anybus® DeviceNet™ communication module
- Anybus® Ethernet communication module
- Anybus® Interbus communication module
- Anybus® LonWorks® communication module
- Anybus® Modbus® Plus communication module
- Anybus® Profibus DPV1 communication module
- Anybus® Profibus Master communication module
Table 2-5—Feedback Interface Specifications

<table>
<thead>
<tr>
<th>Built-in interface:</th>
<th>Expandable: One (1) incremental encoder interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provision(s):</td>
<td>Standard: One (1) optional feedback module provision</td>
</tr>
<tr>
<td></td>
<td>Expandable: Two (2) optional feedback module provisions</td>
</tr>
<tr>
<td>Modules:</td>
<td>5 V incremental encoder interface</td>
</tr>
<tr>
<td></td>
<td>5 V incremental encoder interface with repeater</td>
</tr>
<tr>
<td></td>
<td>4 V in/2 V out, 5 kHz single resolver interface</td>
</tr>
<tr>
<td></td>
<td>4 V in/2 V out, 5 kHz single resolver interface with repeater</td>
</tr>
<tr>
<td></td>
<td>4 V in/2 V out, 5 kHz dual resolver interface</td>
</tr>
<tr>
<td></td>
<td>4 V in/4 V out, 5 kHz single resolver interface</td>
</tr>
<tr>
<td></td>
<td>4 V in/4 V out, 5 kHz dual resolver interface</td>
</tr>
<tr>
<td></td>
<td>15 V serial absolute encoder interface</td>
</tr>
<tr>
<td></td>
<td>24 V serial absolute encoder interface</td>
</tr>
<tr>
<td></td>
<td>15 V incremental encoder interface</td>
</tr>
<tr>
<td></td>
<td>12 V asynchronous serial sincos encoder interface</td>
</tr>
<tr>
<td></td>
<td>5 V synchronous serial sincos encoder interface</td>
</tr>
<tr>
<td></td>
<td>2-input/2-output analog interface</td>
</tr>
</tbody>
</table>

Table 2-6—Built-In Incremental Encoder Interface Specifications

<table>
<thead>
<tr>
<th>Power Supply</th>
<th>Voltage: 5 V DC (±5%), isolated</th>
</tr>
</thead>
<tbody>
<tr>
<td>External load:</td>
<td>480 mA maximum</td>
</tr>
<tr>
<td>Input Signals</td>
<td>Channels: Differential, A and B quadrature and marker</td>
</tr>
<tr>
<td></td>
<td>Required encoder output: RS-422/RS-485 compatible</td>
</tr>
<tr>
<td></td>
<td>Allowable voltage: ±2.7 V maximum</td>
</tr>
<tr>
<td></td>
<td>Switching threshold voltage: ±2.4 V</td>
</tr>
<tr>
<td></td>
<td>Input current: ±5 to ±60 mA</td>
</tr>
<tr>
<td></td>
<td>Common mode voltage: 300 V maximum</td>
</tr>
<tr>
<td></td>
<td>Allowable quadrature error: ±36°</td>
</tr>
<tr>
<td></td>
<td>Input frequency: 750 kHz maximum (3 MHz after x4 multiplication)</td>
</tr>
<tr>
<td>Reference Input</td>
<td>Signal: Differential (RS-422/RS-485 compatible) or single-ended</td>
</tr>
<tr>
<td></td>
<td>Allowable voltage: 5 V maximum</td>
</tr>
<tr>
<td></td>
<td>Switching threshold voltage: 3 V</td>
</tr>
<tr>
<td></td>
<td>Input impedance: 100 Ω</td>
</tr>
<tr>
<td></td>
<td>Input current: 5 mA minimum</td>
</tr>
<tr>
<td></td>
<td>Common mode voltage: 300 V maximum</td>
</tr>
<tr>
<td>Test Point</td>
<td>Analog velocity: ±10 V @ ±250 kHz (1 MHz after x4 multiplication)</td>
</tr>
</tbody>
</table>
3 Electrical Installation

3.1 Overview
This section explains the electrical installation of the control modules. Since control signals vary from application to application, refer to the appropriate software documentation for specific wiring instructions. Additional information can be found in the 2000 Family / Guide to Installation, Troubleshooting, and Maintenance.

3.2 Wiring Standards and Codes
The installation crew is responsible for following the wiring plan produced by the design engineer for the specific application. All wiring must conform to applicable local and national codes.

Attention
The supplier cannot assume responsibility for compliance or noncompliance to any code governing the proper installation of this unit. The following information is intended only as a guide for proper installation. All wiring must conform to the National Electrical Code (NEC), described in publication NFPA No. 70. Local codes may overrule this information.

3.3 Control Module Connections
The control modules accept a variety of analog and digital inputs and outputs, synchronous and asynchronous serial communications, and feedback signals. These control connections are made either directly to the module itself or to optional feedback and communication modules that mount on the controller.

The general layout of the external connections to the control modules is shown in Figure 3-1 and Figure 3-2 and discussed in the sections that follow. Table 3-2 identifies the connectors that plug into the modules. Terminal specifications are given in Table 3-1. All wires should be copper with a rating of 167°F (75°C) or higher.

3.3.1 Wiring Precautions
Observe the following precautions when wiring control signals:
• When disconnecting wires from the screw terminals, completely loosen the screws before pulling out the wires
• Tie shields to Logic Common at one end only
• Twist differential (±) current input signals together
Figure 3-1—270 MHz Standard Control Module
(324792, 324793, and 325196)
Figure 3-2—270 MHz Expandable Control Module (324739 and 324740)
Table 3-1—Control Signal Terminal Specifications

<table>
<thead>
<tr>
<th>270 MHz Standard Connector(s)</th>
<th>270 MHz Expandable Connector(s)</th>
<th>Acceptable Wire Sizes</th>
<th>Tightening Torque</th>
</tr>
</thead>
<tbody>
<tr>
<td>CON2, CON31</td>
<td>CON2, CON6, CON26</td>
<td>16 to 28</td>
<td>1.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1.3-0.09)</td>
<td>(0.22)</td>
</tr>
<tr>
<td>CON3, CON30</td>
<td>CON3, CON23, CON24</td>
<td>12 to 24</td>
<td>4.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3.3-0.21)</td>
<td>(0.50)</td>
</tr>
</tbody>
</table>

Table 3-2—Plug-In Connectors

<table>
<thead>
<tr>
<th>Controller / Connector Function</th>
<th>Controller / Connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Both Controllers</td>
<td></td>
</tr>
<tr>
<td>Keypad/Display Module</td>
<td>Connects the control module with the Keypad/Display Module that serves as the built-in operator interface.</td>
</tr>
<tr>
<td>Communication module slot</td>
<td>Accommodates a variety of communication modules that transfer data serially. For a list of communication modules, refer to Table 2-4.</td>
</tr>
<tr>
<td>Feedback module slot(s)</td>
<td>Accommodates the various optional feedback interface modules that provide position, speed, or analog feedback. The Standard controller has one feedback slot, while the Expandable controller has two. For a list of feedback modules, refer to Table 2-5.</td>
</tr>
<tr>
<td>Digital I/O converter sockets</td>
<td>Accept the digital I/O converter modules that determine the voltage of the configurable input and output points. The Standard controller accepts eight converters, while the Expandable controller accepts two converters.</td>
</tr>
<tr>
<td>Standard Controller</td>
<td></td>
</tr>
<tr>
<td>LEM cables</td>
<td>Interface the control module to the LEM module, which provides drive size and current feedback information to the control module from the power section.</td>
</tr>
<tr>
<td>Gate cables</td>
<td>Interface the control module to the IGBT gate drivers to pass power and IGBT enable signals to the gate drivers and return IGBT status signals.</td>
</tr>
<tr>
<td>Expandable Controller</td>
<td></td>
</tr>
<tr>
<td>Current Regulator Module</td>
<td>Connects the control module to the Current Regulator Module, a separate module used only with the Expandable Control Module.</td>
</tr>
<tr>
<td>Anybus® module slots</td>
<td>Accepts Anybus® communication modules for serial communications using a variety of industry-standard protocols. For a list of Anybus® modules, refer to Table 2-4.</td>
</tr>
<tr>
<td>Expanded digital I/O</td>
<td>Allows a 16- or 32-bit digital I/O fanning strip to be added to expand the available I/O. Fanning strips use the same I/O converters as the control module.</td>
</tr>
</tbody>
</table>
3.3.2 **Asynchronous Serial Connections**

The control modules provide two separate, optically isolated RS-422/485 serial ports for general asynchronous communications with other devices at up to 115.2 kilobaud. The Console Port uses a wired connection (refer to Table 3-3), while the SCI port uses an RJ-45 telephone jack (see Table 3-4). Specific connections, as well as the syntax of communication, known as the protocol, are discussed in the application manual.

![Figure 3-3—Asynchronous Serial Connections](image)

Table 3-3—Asynchronous Serial Connections (Console Port)

<table>
<thead>
<tr>
<th>Terminal</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+5 V DC</td>
<td>Logic power supply for the interface. The interface is not isolated, so this is also the same +5 V DC that powers the drive unit. This terminal can also be used to connect a pull-up resistor in a multidrop network.</td>
</tr>
<tr>
<td>2</td>
<td>Logic Common</td>
<td>Logic Common for the interface. It is optically isolated and floats relative to earth ground. With an RS-485 device, connect to the logic common of the external device. When drive units are bussed together as a network, connect the Logic Commons of all drive units to keep the common-mode voltage between them within the –7 V to +12 V specification of RS-485. This terminal can also be used to connect a pull-down resistor in a multidrop network.</td>
</tr>
<tr>
<td>3</td>
<td>Receive Data (+)</td>
<td>Differential signal that passes data into the receiver of the interface.</td>
</tr>
<tr>
<td>4</td>
<td>Receive Data (–)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Transmit Data (+)</td>
<td>Differential signal that transmits data to the receiving device.</td>
</tr>
<tr>
<td>6</td>
<td>Transmit Data (–)</td>
<td></td>
</tr>
</tbody>
</table>
Table 3-4—Asynchronous Serial Pinout (SCI Port)

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+5 V DC</td>
</tr>
<tr>
<td>2</td>
<td>+5 V DC</td>
</tr>
<tr>
<td>3</td>
<td>Receive (+)</td>
</tr>
<tr>
<td>4</td>
<td>Receive (–)</td>
</tr>
<tr>
<td>5</td>
<td>Transmit (–)</td>
</tr>
<tr>
<td>6</td>
<td>Transmit (+)</td>
</tr>
<tr>
<td>7</td>
<td>Logic Common</td>
</tr>
<tr>
<td>8</td>
<td>Logic Common</td>
</tr>
</tbody>
</table>

3.3.3 Synchronous Serial Interface (SSI) Connections

Each control module provides a fiber-optic synchronous serial interface (SSI) for slaving together multiple axes (see Figure 3-4). The SSI protocol is a proprietary protocol that provides accurate communication at high speeds. A master controller generates commands that can be received by multiple slave controllers. The sample clock can also be passed between master and slave(s) for precise time and position synchronization in multiaxis systems.

Interconnection of the fiber-optic signals varies from application to application. In general, the transmit port of the master should be connected to the receive port of the slave and vice versa. Please refer to the application manual for installation instructions and required software settings.

3.3.4 Fiber-Optic Synchronous/Asynchronous Serial Connections

A fiber-optic synchronous/asynchronous serial communications interface is also provided for high-speed data communications (see Figure 3-4).

Interconnection of the fiber-optic signals varies from application to application. In general, the transmit port of the master should be connected to the receive port of the slave and vice versa. Please refer to the application manual for installation instructions and required software settings.
Figure 3-4—Fiber-Optic Serial Connections

Table 3-5—Fiber-Optic Serial Connections

<table>
<thead>
<tr>
<th>Connector</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synchronous/Asynchronous Serial Communications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U1</td>
<td>Transmit Data</td>
<td>Fiber-optic synchronous/asynchronous serial communication signals.</td>
</tr>
<tr>
<td>U2</td>
<td>Receive Data</td>
<td></td>
</tr>
<tr>
<td>Synchronous Serial Communications (SSI)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U3</td>
<td>Transmit Data</td>
<td>Fiber-optic synchronous serial drive command signals.</td>
</tr>
<tr>
<td>U4</td>
<td>Receive Data</td>
<td></td>
</tr>
</tbody>
</table>
3.3.5 Analog I/O Connections

Each control module provides three ±10 V DC or 0 to 20 mA inputs and two ±10 V DC outputs. Inputs have 14 bits of resolution and are differential, providing for some common-mode voltage rejection to eliminate ground loops. Outputs have 12 bits of resolution and are referenced to the signal common of the control module. The functionality of each of these signals is determined by the application software.

Figure 3-5—Analog I/O Connections

![Analog I/O Connections Diagram]

Table 3-6—Analog I/O Connections

<table>
<thead>
<tr>
<th>Terminal</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Analog Input 1 (+)</td>
<td>Differential analog input 1.</td>
</tr>
</tbody>
</table>
| 2 | Analog Input 1 (–) | 0 to ±10 V DC or 0 to 20 mA
 | Input impedance: 400 kΩ or 500 Ω
 | To convert to 0 to 20 mA, install a 500 Ω resistor between the terminals. |
| 3 | Analog Input 2 (+) | Differential analog input 2. |
| 4 | Analog Input 2 (–) | 0 to ±10 V DC or 0 to 20 mA
 | Input impedance: 400 kΩ or 500 Ω
 | To convert to 0 to 20 mA, install a 500 Ω resistor between the terminals. |
| 5 | Analog Input 3 (+) | Differential analog input 3. |
| 6 | Analog Input 3 (–) | 0 to ±10 V DC or 0 to 20 mA
 | Input impedance: 400 kΩ or 500 Ω
 | To convert to 0 to 20 mA, install a 500 Ω resistor between the terminals. |
| 7 | Analog Output 1 | Analog output 1. |
| | | 0 to ±10 V DC
 | Maximum output: 10 mA |
| 8 | Signal Common | Not isolated (is also Signal Common for the drive unit). Provided as a reference voltage for Analog Output 1. |
| 9 | Analog Output 2 | Analog output 2. |
| | | 0 to ±10 V DC
 | Maximum output: 10 mA |
| 10 | Signal Common | Not isolated (is also Signal Common for the drive unit). Provided as a reference voltage for Analog Output 2. |
3.3.6 Digital I/O Connections

Each control module provides a number of digital I/O points that can be tailored to an application by installing appropriately rated AC or DC input or output converter modules. The quantity and kind of I/O available depend upon the controller.

The Standard control modules provide two relay outputs and eight configurable I/O points, each of which can be an input or output depending upon the converter selected. The Expandable control modules provide two inputs and two relay outputs on the module itself and accepts up to 16 or 32 configurable I/O points using an optional fanning strip that mounts beneath 2400, 2420, or 2450 units.

I/O capabilities are summarized in Table 3-7. The application software determines the functionality of each input and output. Refer to the application documentation for specific information on programming these signals. Table 3-8 lists available I/O converters and their voltage ranges. The layout of the on-board digital I/O is shown in Figure 3-6 and Figure 3-7. The layout of fanning strip I/O is shown in Figure 3-8 through Figure 3-10.

Table 3-7—Digital I/O Summary

<table>
<thead>
<tr>
<th>Bit</th>
<th>Standard Controller</th>
<th>Expandable Controller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inputs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I00</td>
<td>—</td>
<td>Input converters (mount on module; see Figure 3-7)</td>
</tr>
<tr>
<td>I01</td>
<td></td>
<td>(mount on module; see Figure 3-7)</td>
</tr>
<tr>
<td>Outputs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O00</td>
<td>Dry-contact relays (on-board module; see Figure 3-7)</td>
<td>Dry-contact relays (on-board module; see Figure 3-7)</td>
</tr>
<tr>
<td>O01</td>
<td>Form A contacts rated 250 V AC @ 5 A</td>
<td>Form A contacts rated 250 V AC @ 5 A</td>
</tr>
<tr>
<td>Configurable I/O Points</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C00-C07</td>
<td>Input, output, or relay converters (mount on module; see Figure 3-7)</td>
<td>Input, output, or relay converters (mount on separate 16-bit or 32-bit I/O fanning strip; see Figure 3-8 through Figure 3-10)</td>
</tr>
<tr>
<td>C08-C15</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>C16-C31</td>
<td>—</td>
<td>Input, output, or relay converters (mount on separate 32-bit I/O fanning strip; see Figure 3-9 and Figure 3-10)</td>
</tr>
</tbody>
</table>

Table 3-8—I/O Converter Modules

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Device</th>
<th>Voltage Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>912688</td>
<td>Input converter</td>
<td>90 to 140 V AC</td>
</tr>
<tr>
<td>919808</td>
<td>Input converter</td>
<td>180 to 280 V AC</td>
</tr>
<tr>
<td>913108</td>
<td>Output converter</td>
<td>12 to 140 V AC</td>
</tr>
<tr>
<td>919809</td>
<td>Output converter</td>
<td>180 to 280 V AC</td>
</tr>
<tr>
<td>913109</td>
<td>Input converter</td>
<td>2.5 to 28 V DC</td>
</tr>
<tr>
<td>913110</td>
<td>Output converter</td>
<td>5 to 60 V DC</td>
</tr>
<tr>
<td>915282</td>
<td>Normally open relay</td>
<td>0 to 30 V DC, 0 to 250 V AC</td>
</tr>
<tr>
<td>921332</td>
<td>Normally closed relay</td>
<td>0 to 30 V DC, 0 to 250 V AC</td>
</tr>
</tbody>
</table>
Figure 3-6—On-Board Digital I/O (Standard Control Modules)

Figure 3-7—On-Board Digital I/O (Expandable Control Modules)
Figure 3-8—16-Bit Fanning Strip Expanded Digital I/O (320102)

Figure 3-9—32-Bit Fanning Strip Expanded Digital I/O (320146)
3.3.7 Incremental Encoder Interface Connections (Expandable Control Modules)

The Expandable control modules have a built-in incremental encoder interface. Refer to the 2000 Family / Guide to Installation, Troubleshooting, and Maintenance for connection descriptions and wiring diagrams.

3.4 Feedback Modules

A variety of optional feedback interface modules are available for providing closed-loop control of motor velocity and/or position or for obtaining machine or material feedback. These modules mount on the control module. The Standard control modules accommodate one feedback interface, while the Expandable control modules accept two interfaces in addition to a built-in incremental encoder interface. Refer to the 2000 Family / Guide to Installation, Troubleshooting, and Maintenance for connection information.
3.5 Communication Modules

A variety of optional communication modules is available for interfacing the drive with external devices using popular communication protocols. Both Standard and Expandable controllers accept a single Unico communications module. Expandable control modules also accept up to two Anybus® communication modules. The Unico and Anybus® options cannot be used simultaneously. Refer to Table 2-4 for a list of available modules.

For Unico communication module connection information, refer to the 2000 Family / Guide to Installation, Troubleshooting, and Maintenance. For Anybus® connections, refer to the documentation provided with the Anybus® module. Anybus® modules may be grounded externally as shown in Figure 3-12.

Figure 3-12—Anybus® Communication Grounding
UNICO—Worldwide

<table>
<thead>
<tr>
<th>Country</th>
<th>City</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States</td>
<td>New Lenox, Illinois</td>
<td>815.485.5775</td>
</tr>
<tr>
<td></td>
<td>Wixom, Michigan</td>
<td>248.380.7610</td>
</tr>
<tr>
<td></td>
<td>Austinburg, Ohio</td>
<td>216.387.8486</td>
</tr>
<tr>
<td></td>
<td>Midland, Texas</td>
<td>432.216.7865</td>
</tr>
<tr>
<td></td>
<td>Sandy, Utah</td>
<td>801.942.2500</td>
</tr>
<tr>
<td>South America</td>
<td>El Tigre, Venezuela</td>
<td>58.283.241.4024</td>
</tr>
<tr>
<td></td>
<td>Maracaibo, Venezuela</td>
<td>58.261.792.4047</td>
</tr>
<tr>
<td>Europe</td>
<td>Milton Keynes, England</td>
<td>44.1908.260000</td>
</tr>
<tr>
<td></td>
<td>Wilnsdorf, Germany</td>
<td>49.2739.303.0</td>
</tr>
<tr>
<td>Canada</td>
<td>Mississauga, Ontario</td>
<td>905.602.4677</td>
</tr>
<tr>
<td>Asia</td>
<td>Beijing, China</td>
<td>86.10.6218.6365</td>
</tr>
<tr>
<td></td>
<td>Osaka, Japan</td>
<td>81.66.945.0077</td>
</tr>
<tr>
<td></td>
<td>Cavite, Philippines</td>
<td>63.46.434.9618</td>
</tr>
</tbody>
</table>